厦门盈亦自动化科技有限公司
主营产品: 可编程序控制器、PLC模块、CPU处理器、机架电源端子,自动化
罗克韦尔1794-IT8 安全处理器 模块 全新供应
观看罗克韦尔1794-IT8 安全处理器 模块 全新供应视频:

罗克韦尔1794-IT8 安全处理器 模块 全新供应

1756-A10

1756-A13

1756-A17

1756-A4

1756-A7

1756-BA1

1756-BA2

1756-BATA

1756-IF16

1756-IF16H

1756-IF8

1756-IF8H

1756-IF8I

1756-IF6I

1756-IF6CIS

1756-IT6I

 

1794-IM16

1794-IM8

1794-IR8

1794-IRT8

1794-IT8

1794-IV16

1794-IV32

1794-OA16

 

1756-HSC

1756-IA16

1756-IA16I

1756-IA32

1756-IB16

1756-IB16D

1756-IB16I

1756-IB32

 

1756-CN2

1756-CN2R

1756-CNB

1756-CNBR

1756-DHRIO

1756-DNB

1756-EN2T

1756-EN2TR

1756-EN3TR

1756-ENBT

1756-ENET

1756-EWEB

1756-IR6I

1756-IR12

1756-IRT8I

1756-IT6I2

1756-IM16

1756-L61

1756-L62

1756-L63

1756-L64

1756-L65

1756-L71

1756-L71S

 

1756-M03SE

1756-M08SE

1756-M16SE

1756-N2

1756-OA16

1756-OA16I

1756-OB16D

1756-OB16E

1756-OB16I

1756-OB32

1756-OF4

1756-OF8

 

1756-BATA

1756-CNB

1756-IC16

1756-IB16

1756-IB32

1756-IF16

1756-IR61

1734-ACNR

1734-ADN

1734-AENT

1734-AENTR

1734-APB

 

1756-TBS6H

1756-TBSH

1757-SRM

1746-N2

1746-NI16I

1746-NI4

 

1756-PA75R

1756-PB72

1756-PB75

1756-RM

1756-IB16

1746-IV32

 

1756-OF8I

1756-OW16I

1756-PA72

1756-PA75

1794-OA8

1794-OA8I

 

1746-IA16

1746-IB16

1746-IB32

1746-IM16

1746-IO12DC

1746-ITB16


罗克韦尔1794-IT8 安全处理器 模块 全新供应

固件利用ChibiOS环境以C语言编写,其中包括实时操作系统(RTOS)、硬件抽象层(HAL)、外设驱动程序等工具,使代码可以在相似的微控制器之间轻松移植。项目基于三个自定义模块:

ADIN1110.c是驱动程序,用于支持通过SPI接口与ADIN1110交换数据和命令。它包括用于从器件寄存器读取和写入数据的低级通信函数,以及用于发送和接收以太网帧的函数。它还包括用于在10BASE-T1L收发器之间建立通信的函数。通知是否出现新帧的引脚在中断时读取,以尽量减少延迟。

TMC5160.c实现了控制TMC5160运动控制器所需的全部函数,配置为以全功能运动控制器模式运行。它实现了恒速和位置控制两种模式,允许使用六点斜坡进行平滑准确的定位。与多个运动控制器的通信通过单条SPI总线和多条独立的片选线实现。它还提供了一组函数和类型定义来简化运动同步。

Devices.c是从T1L链路接收的数据与连接到控制器的物理器件之间的接口。它包括与主机接口中定义的结构体类似的结构体,并且具有在每次接收到带有效数据的新帧时更新结构体的函数。此模块还用于确定每次更新结构体时执行哪些操作,例如,哪个物理运动控制器与在特定器件地址接收到的命令相关。

图4.固件流程图。

系统亮点和验证

该项目旨在演示如何在自动化和工业场景中集成新的10BASE-T1L以太网物理层标准,将控制器和用户界面与端点(例如多个传感器和执行器)连接起来。此应用针对多个步进电机的远程实时控制,广泛用于工业中的低功耗自动化任务,但也可用于轻型机器人和数控机床,例如台式3D打印机、台式铣床和其他类型的笛卡尔绘图仪。此外,它还能扩展用于其他类型的执行器和远程控制器件。与具有类似用途的现有接口相比,其主要优点包括:

布线简单,只需要一根双绞线。由于支持通过数据线供电,低功耗器件(如传感器)可以直接借助此连接供电,从而进一步减少所需的布线和连接器数量,并降低整体系统的复杂性、成本和重量。

使用PoDL标准的电力传输方式,通过数据线上叠加的直流电压为连接到网络的设备供电。这种耦合只需要使用无源元件就可以实现,接收端的电压经过滤波后,可以直接给器件或DC-DC转换器供电,不需要整流。只要适当确定用于此类耦合的元件大小,就可以实现一个高效率系统。本项目中使用评估板上安装的标准元件,整体效率约为93%(采用24 V电源,总负载电流为200 mA)。然而,这一结果还有很大的改进余地,事实上,大部分损耗是电源路径上无源元件的电阻压降造成的。

用途广泛,既可用于后一公里连接,也可用于端点连接。ADI 10BASE-T1L器件针对长达1.7公里的距离进行了测试。它们还支持菊花链连接,这对系统复杂性的影响很小。例如,使用ADIN2111双端口低复杂度交换芯片可以设计集成菊花链功能的器件,使链路也适用于端点网络。

易于与已集成以太网控制器的现有设备连接,包括个人电脑和笔记本电脑。数据帧遵循以太网数据链路标准,所有与以太网兼容的协议都可以在其之上实现,因此只需要一个媒介转换器作为桥接器与标准以太网链路连接。例如,本项目中使用的评估板EVAL-ADIN1100可用作透明媒介转换器的参考设计,它仅需要两个以太网PHY和一个可选微控制器用于配置和调试。

高达10 Mbps的高数据速率,全双工。此特性与菊花链拓扑(在其上可以实现基于工业以太网的协议)相结合,使其可用于需要确定性传输延迟的实时应用。

根据应用的安全性和稳健性要求,收发器和媒介之间的隔离可以通过容性耦合或磁耦合实现。

我们对该系统进行了多次测量以评估其性能。所有用于与ADIN1110收发器和TMC5160控制器通信的外设,都配置为使用标准硬件配置可达到的大可能速度。考虑到微控制器具有80 MHz系统时钟,对于运动控制器和ADIN1110收发器,SPI外设的数据速率分别设置为2.5 MHz和20 MHz。对于TMC5160,通过调整微控制器时钟配置并向IC提供外部时钟信号,SPI频率可进一步提高至8 MHz,而对于ADIN1110,数据手册规定的上限值为25 MHz。

对延迟进行评估,请求数据和收到应答帧之间的总时间大约为4 ms(500个样本的平均值,使用Wireshark协议分析仪计算数据请求和相应应答的时间戳之间的差值测得)。我们还进行了其他评估,以确定系统的哪些部分是导致此延迟的原因。结果表明,主要原因是RTOS的延时函数,其预留的小延迟为1 ms,用于设置TMC5160的读写操作间隔,而所需的延迟约为几十纳秒。这可以通过定义基于定时器的其他延迟函数来改进,使延迟间隔可以更短。

导致延迟的第二个原因是用于接收帧的Scapy函数,调用此函数后至少需要3 ms的设置时间。在实际应用中,直接使用操作系统的网络适配器驱动程序来开发接口,而不借助Scapy等第三方工具也能有所改进。然而,这样做也有一些缺点,包括会失去与不同操作系统的兼容性并增加代码复杂度。

图5.电源路径的简化方案。

通过切换GPIO并使用示波器测量高电平周期,可测得微控制器上实现回调的准确执行时间。实测执行时间包括读取和解析接收到的帧以及向运动控制器发送命令的函数执行时间。

第二组测量旨在评估使用PoDL为远程器件供电时传输路径上的功率损耗。我们用设置为不同电流的电子负载代替运动控制器扩展板进行测试,从0.1 A到0.5 A,步长为100 mA,以确定哪些元件对功率损耗有较大影响,进而确定如何改进设计以实现更高的额定电流。

图6.每个无源元件的功率损耗与电流的关系。

结果表明,桥式整流器和肖特基二极管D2是造成损耗的主要因素,两者均用于极性反接保护。两个元件可以用基于MOSFET晶体管和理想二极管控制器的类似电路代替,以获得更高的效率,同时也不会失去上述保护能力。在较高电流下,用于输入和输出电源滤波的耦合电感的直流电阻占主导地位,因此为了提高电流能力,还需使用具有更高额定电流的类似电感。

结论

工业4.0正在推动智能自动化的发展。ADI Trinamic技术与ADIN1100、ADIN1110、10BASE-T1L收发器配合使用,有助于控制器对远至1700米的传感器和执行器实现远程控制,而无需边缘供电。通过可靠的远程控制方法,可以轻松地在更远距离实时控制步进电机,而不必牺牲任何性能或速度。这些系统解决方案将助力工业转型,有望进一步缩短响应时间,充分提高性能。

罗克韦尔1794-IT8 安全处理器 模块 全新供应

展开全文
拨打电话 微信咨询 发送询价