厦门盈亦自动化科技有限公司
主营产品: 可编程序控制器、PLC模块、CPU处理器、机架电源端子,自动化
PLC模块 CPU模块 1794-IB10XOB6 超大库存 现货出售

PLC模块 CPU模块 1794-IB10XOB6 超大库存 现货出售

1756-A10

1756-A13

1756-A17

1756-A4

1756-A7

1756-BA1

1756-BA2

1756-BATA

1756-IF16

1756-IF16H

1756-IF8

1756-IF8H

1756-IF8I

1756-IF6I

1756-IF6CIS

1756-IT6I

 

1794-IM16

1794-IM8

1794-IR8

1794-IRT8

1794-IT8

1794-IV16

1794-IV32

1794-OA16

 

1756-HSC

1756-IA16

1756-IA16I

1756-IA32

1756-IB16

1756-IB16D

1756-IB16I

1756-IB32

 

1756-CN2

1756-CN2R

1756-CNB

1756-CNBR

1756-DHRIO

1756-DNB

1756-EN2T

1756-EN2TR

1756-EN3TR

1756-ENBT

1756-ENET

1756-EWEB

1756-IR6I

1756-IR12

1756-IRT8I

1756-IT6I2

1756-IM16

1756-L61

1756-L62

1756-L63

1756-L64

1756-L65

1756-L71

1756-L71S

 

1756-M03SE

1756-M08SE

1756-M16SE

1756-N2

1756-OA16

1756-OA16I

1756-OB16D

1756-OB16E

1756-OB16I

1756-OB32

1756-OF4

1756-OF8

 

1756-BATA

1756-CNB

1756-IC16

1756-IB16

1756-IB32

1756-IF16

1756-IR61

1734-ACNR

1734-ADN

1734-AENT

1734-AENTR

1734-APB

 

1756-TBS6H

1756-TBSH

1757-SRM

1746-N2

1746-NI16I

1746-NI4

 

1756-PA75R

1756-PB72

1756-PB75

1756-RM

1756-IB16

1746-IV32

 

1756-OF8I

1756-OW16I

1756-PA72

1756-PA75

1794-OA8

1794-OA8I

 

1746-IA16

1746-IB16

1746-IB32

1746-IM16

1746-IO12DC

1746-ITB16


PLC模块 CPU模块 1794-IB10XOB6 超大库存 现货出售

01.

项目背景介绍

AIGC(即ArtificialIntelligence Generated Content),中文译为人工智能生成内容。简单来说,就是经过大量特征训练过的神经网络模型来对新的内容或者需求来生成人们需要的创作内容,类似使用人类用思考和创造力才能完成的工作过程,而现在可以利用人工智能技术来替代我们完成。在狭义上AIGC是指利用AI自动生成内容的生产方式,比如自动写作、自动设计等。在广义上,AIGC是指像人类一样具备生成创造能力的AI技术,它可以基于训练数据和生成算法来完成各类的内容生成创作。


在图像生成模型生成方面主要的几个代表模型,是以下常见的4个模型:

DNN

GAN

VAE

Diffusion


其中基于深度神经网络(DNN)的进行图像艺术风格转移(Transform),生成高质量的具有艺术风格图像的神经网络模型。该模型通过深度神经网络分别提取图像中的内容和风格特征,然后对其目标图片内容进行重组,生成具有原图内容和艺术风格的图像,其风格转移不仅对图像的图案,颜色,特征等进行修改还保留原图高可辨识的内容载体。


通常AIGC对硬件性能要求较高,只要具备高性能的图形图像的PC图形工作站或者服务器上来运行。而这里我们将使用MYD-YG2L开发板上来实现在嵌入式设备上完成图像风格转移计算这一任务。并且结合图形界面和USB摄像头完成对任意拍摄的图片进行图像风格化的开发。让嵌入式上也能够体验这种独特的AIGC内容生成方式。


02.

技术硬件方案

项目采用MYD-YG2L为主控板,使用800万像素4K级广角USB相机镜头,通过采集画面,在主控板内完成对画面的风格化处理,并通过HDMI输出显示生成的图像。


微信图片_20231023134031.png


这里使用开发板连接HDMI显示器和接入一个4K高清镜头,主要硬件连接如下图:


微信图片_20231023134035.png


03.

主要技术原理

图像风格转移的主要过程是对输入img_content和img_style,然后要把img_content的内容主体和img_style进行一个结合,实现一个图像的创意创作,这个过程也叫做Style Transform 即风格转移。如下图中,列是输入的原图像, 第二列是风格图,第三列之后就是各种控制参数下的输出风格图像:


微信图片_20231023134038.png


其核心的算法是把基于CNN卷积编码后的特征向量transformer个结合到风格迁移任务中,再对混合后的内容进行解码,从而输出新的图像内容,主要参考李飞飞论文,其核心流程如下图:


微信图片_20231023134041.png


微信图片_20231023134044.png


微信图片_20231023134046.png


经过测试MYD-YG2L较好的支持OpenCV这个工具库,并且具备较强的图像处理能力。那么就可以在板上使用OpenCV的DNN模块来实现以上算法过程。OpenCV的DNN模块从发行版开始,主要是支持推理,而数据训练不是其支持的目标。因此我们可以使用已经训练好的模型,在板上上完成推理过程,即图像风格转移生成的这一过程。现在OpenCV已经支持TensorFlow、Pytorch/Torch、Caffe、DarkNet等模型的读取,OpenCV的 DNN模块的用法。


PLC模块 CPU模块 1794-IB10XOB6 超大库存 现货出售

展开全文
拨打电话 微信咨询 发送询价