操作便利 1783-US05T 数控机械设备
1756-A10 1756-A13 1756-A17 1756-A4 1756-A7 1756-BA1 1756-BA2 1756-BATA | 1756-IF16 1756-IF16H 1756-IF8 1756-IF8H 1756-IF8I 1756-IF6I 1756-IF6CIS 1756-IT6I
| 1794-IM16 1794-IM8 1794-IR8 1794-IRT8 1794-IT8 1794-IV16 1794-IV32 1794-OA16
| 1756-HSC 1756-IA16 1756-IA16I 1756-IA32 1756-IB16 1756-IB16D 1756-IB16I 1756-IB32
|
1756-CN2 1756-CN2R 1756-CNB 1756-CNBR 1756-DHRIO 1756-DNB 1756-EN2T 1756-EN2TR 1756-EN3TR 1756-ENBT 1756-ENET 1756-EWEB | 1756-IR6I 1756-IR12 1756-IRT8I 1756-IT6I2 1756-IM16 1756-L61 1756-L62 1756-L63 1756-L64 1756-L65 1756-L71 1756-L71S
| 1756-M03SE 1756-M08SE 1756-M16SE 1756-N2 1756-OA16 1756-OA16I 1756-OB16D 1756-OB16E 1756-OB16I 1756-OB32 1756-OF4 1756-OF8
| 1756-BATA 1756-CNB 1756-IC16 1756-IB16 1756-IB32 1756-IF16 1756-IR61 1734-ACNR 1734-ADN 1734-AENT 1734-AENTR 1734-APB
|
1756-TBS6H 1756-TBSH 1757-SRM 1746-N2 1746-NI16I 1746-NI4
| 1756-PA75R 1756-PB72 1756-PB75 1756-RM 1756-IB16 1746-IV32
| 1756-OF8I 1756-OW16I 1756-PA72 1756-PA75 1794-OA8 1794-OA8I
| 1746-IA16 1746-IB16 1746-IB32 1746-IM16 1746-IO12DC 1746-ITB16 |
操作便利 1783-US05T 数控机械设备
倒逼数转动力不足企业释放数据能力
然而,当前我国还存在很大一部分工业企业数字化转型的动力不足,还处于信息化的过程中,它们没有形成数据体系或者说没有一个完整的数据战略去指导产生数据资产。
在国际数据管理研究院主要负责人吴大有看来,工业企业数据化转型,不能只是卖个设备、工具。工具或设备一定要具有数据采集合法采集的能力,我们需要去思考远程的数据联动,能够去监控数据,监控设备的运转正常性,能够提前地预测设备可能故障,并且做到“lingguzhang”服务。
现在越来越多的企业意识到,工业行业数字化降本增效必然会走到一个瓶颈期,因为所有的数字化转型如果是以降本增效的目标是遇到“阀值”,成本不可能归零,效益不会无限扩大。企业要转变商业机制或服务模型,而这个过程当中,数据资产入表其实在倒逼企业释放数据能力的同时,也在倒逼数字化业务模式要发生变化。企业数据资产将促进企业传统的业务形态升级,而数据资产的沉淀将终为用户创造实质价值,这样才能够产生有效的发力点。
用友网络大型企业客户事业群首席数据官张旭同样认为,如果仅仅是降本增效“终会有头”,但是企业能提供更好的商品和产品给社会,它的未来可期的地方就非常多。他提到,用友“工业大数据+AI”解决方案基于大数据技术及新一代AI技术,融合到工业全生命周期业务场景里,挖掘工业大数据价值,帮助制造企业实现合理排产、优化配料、质量诊断、故障预测、安全预警,玩转数据资产,让生产更简单,质量更稳定,成本更低廉,决策更科学。
王相成则认为,工业企业的数据来源复杂多样、数据规模更大,需要有针对工业企业专门数据治理、数据资产管理平台来支撑,这是实现数据资产化的技术保障;另外工业企业在经营管理、生产运营方面,有很多场景可以拉动由数据资源到数据产品、数据服务转换,如战略决策、生产改进、运营优化、风险防控等方面,这是实现数据资产化的重要引擎,需要化厂商提供服务支撑。
工业数据资源的开源设计非常具有价值,由大企业牵头然后开源打造生态,会有新的商业转换机会。颜阳预测,随着大模型、元宇宙的发展以及未来企业数据资产入表的推进,如果企业能够抓住机会成长起来,有可能会成为新的“独角兽”。
操作便利 1783-US05T 数控机械设备