不可拆卸端子 140CFK00400 低速高转矩输出
140ACI04000 | 140ACI04000 | 140ACI04000 |
140AC013000 | 140AC013000 | 140AC013000 |
140CRA21110 | 140CRA21110 | 140CRA21110 |
140DDI84100 | 140DDI84100 | 140DDI84100 |
140DD015310 | 140DD015310 | 140DD015310 |
140CPU11302 | 140CPU11302 | 140CPU11302 |
140CPU31110 | 140CPU31110 | 140CPU31110 |
140DD035300 | 140DD035300 | 140DD035300 |
140CP065150 | 140CP065150 | 140CP065150 |
140CPU65150R | 140CPU65150R | 140CPU65150R |
140CPU67160 | 140CPU67160 | 140CPU67160 |
140CPU67160C | 140CPU67160C | 140CPU67160C |
140CRP31200 | 140CRP31200 | 140CRP31200 |
140DD035301 | 140DD035301 | 140DD035301 |
140DAO84000 | 140DAO84000 | 140DAO84000 |
140DDI35300 | 140DDI35300 | 140DDI35300 |
140CPU65150 | 140CPU65150 | 140CPU65150 |
140DDI15310 | 140DDI15310 | 140DDI15310 |
不可拆卸端子 140CFK00400 低速高转矩输出
趋势四
配电的安全可靠在智算中心更加重要
对于传统数据中心,不同工作负载同时达到峰值的概率极低。比如,典型的大型数据中心峰均比通常在1.5-2.0或更高。但在智算中心,由于AI训练负载缺乏变化(峰均比接近1.0),工作负载可以在峰值功率下,运行数小时、数天甚至数周。其结果是增加了上游大型断路器脱扣的可能性,以及宕机的风险。同时,由于机柜功率密度的升高,需要采用更高额定电流值的断路器、列头柜、小母线等。而在电阻变小的同时,可以通过的故障电流也就更大,这意味着IT机房出现拉弧的风险也会升高,保证该区域工作人员的安全是必须解决的难题。
施耐德电气观点:
在设计阶段采用模拟软件对电力系统进行弧闪风险评估,分析可产生的故障电流,并且对可靠性进行分析,以便为特定场地设计佳解决方案。
这项研究必须从中压开关柜分析至机柜层面,同时建议如果新建数据中心IT机房的AI训练工作负载超过60-70%,需要根据下游各馈线断路器的总和来确定主断路器的大小,设计时不再考虑同时系数。
不可拆卸端子 140CFK00400 低速高转矩输出