厦门盈亦自动化科技有限公司
主营产品: 可编程序控制器、PLC模块、CPU处理器、机架电源端子,自动化
电源模块 MVI56-MNET 结构简单 伺服驱动

电源模块 MVI56-MNET 结构简单 伺服驱动

1756-A10

1756-A13

1756-A17

1756-A4

1756-A7

1756-BA1

1756-BA2

1756-BATA

1756-IF16

1756-IF16H

1756-IF8

1756-IF8H

1756-IF8I

1756-IF6I

1756-IF6CIS

1756-IT6I

 

1794-IM16

1794-IM8

1794-IR8

1794-IRT8

1794-IT8

1794-IV16

1794-IV32

1794-OA16

 

1756-HSC

1756-IA16

1756-IA16I

1756-IA32

1756-IB16

1756-IB16D

1756-IB16I

1756-IB32

 

1756-CN2

1756-CN2R

1756-CNB

1756-CNBR

1756-DHRIO

1756-DNB

1756-EN2T

1756-EN2TR

1756-EN3TR

1756-ENBT

1756-ENET

1756-EWEB

1756-IR6I

1756-IR12

1756-IRT8I

1756-IT6I2

1756-IM16

1756-L61

1756-L62

1756-L63

1756-L64

1756-L65

1756-L71

1756-L71S

 

1756-M03SE

1756-M08SE

1756-M16SE

1756-N2

1756-OA16

1756-OA16I

1756-OB16D

1756-OB16E

1756-OB16I

1756-OB32

1756-OF4

1756-OF8

 

1756-BATA

1756-CNB

1756-IC16

1756-IB16

1756-IB32

1756-IF16

1756-IR61

1734-ACNR

1734-ADN

1734-AENT

1734-AENTR

1734-APB

 

1756-TBS6H

1756-TBSH

1757-SRM

1746-N2

1746-NI16I

1746-NI4

 

1756-PA75R

1756-PB72

1756-PB75

1756-RM

1756-IB16

1746-IV32

 

1756-OF8I

1756-OW16I

1756-PA72

1756-PA75

1794-OA8

1794-OA8I

 

1746-IA16

1746-IB16

1746-IB32

1746-IM16

1746-IO12DC

1746-ITB16


电源模块 MVI56-MNET 结构简单 伺服驱动

不同工作条件下电机性能快速预测

电动汽车的电机工作范围比较宽,为了更有效地驱动电机,需要在逆变器不同的输入电流条件下对其进行优化设计,因此要进行大量的磁场仿真分析。


微信图片_20240531133717.png

图5. 左:电动汽车工作范围;右:电机效率随输入电流和电机状态(转速和扭矩)而变化


FEM仿真模型如下图所示。为了选择合适的电流条件,需要采用1848个FEM仿真结果进行优化,因此我们引入ODYSSEE的机器学习方法,想要降低仿真分析数量。建模工具采用MSC Apex,FEM仿真工具为EMSolution,机器学习软件为ODYSSEE。


微信图片_20240531133720.jpg

图6. 左:FEM仿真模型;右:分析流程及使用软件


我们使用240组FEM仿真结果进行机器学习模型的训练,构建高精度的降阶模型以替代FEM仿真分析。降阶模型预测结果与FEM结果对比如下,结果表明降阶模型预测结果与FEM结果几乎完全相同。


微信图片_20240531133722.png

图7. 上:FEM仿真结果;下:降阶模型预测结果


总  结  

针对电机形状设计优化问题,使用ODYSSEE的机器学习方法,可以减少约68.9%的FEM次数(1236→378次)。另一方面,由于电机材料特性的原因,降阶模型预测的扭矩波动的某些结果与FEM结果存在一定的偏差,可以采用在帕累托前沿选取FEM结果的方式得到弥补。


针对不同工作条件下的电机设计优化问题,使用ODYSSEE的机器学习方法,可以将FEM的次数减少约87.0%(1848→240次),并且具有较高的预测精度。


电源模块 MVI56-MNET 结构简单 伺服驱动

展开全文
拨打电话 微信咨询 发送询价