抗干扰能力强IC200UDR020 模拟量模块
IC200NDD010 | IC200CHS014 | IC693CBL327 |
IC200UDD212 | IC200UDD020 | IC693MDL260 |
IC200PNS002 | IC200NDD101 | IC693CBL311 |
IC200CHS102 | IC200CHS011 | IC693CBL303 |
IC200CHS101 | IC200CHS122 | IC693CBL313 |
IC200UDD220 | IC200MDL743 | IC693NIU004 |
IC200UDR120 | IC200MDL750 | IC693CBK004 |
IC200CPU005 | IC200CBL655 | IC693MCD001 |
IC200UDD240 | IC200CHS001 | IC693MDL241 |
IC200CHS112 | IC200CBL602 | IC693PBS201 |
IC200CHS022 | IC200CHS015 | IC693CBL301 |
IC200PKG104 | IC200CBL635 | IC693CBK002 |
IC200NDR010 | IC200CBL615 | IC693CBK001 |
IC200UDD104 | IC200UAL006 | IC693MDL330 |
IC200NAL110 | IC200MDL742 | IC693PBM200 |
IC200PNS001 | IC200UDD040 | IC695RMX128 |
IC200NAL211 | IC200MDL740 | IC695CPU320 |
IC200NDR001 | IC200CHS002 | IC695CMX128 |
IC200MDL930 | IC200CBL555 | IC695ACC415 |
IC200CHS025 | IC200CBL605 | IC695ACC414 |
IC200CHS005 | IC200UDD110 | IC695ACC413 |
IC200CHS006 | IC200MDL730 | IC695CPK400 |
IC200CHS003 | IC200CBL600 | IC695EDS001 |
IC200CHS111 | IC200CBL510 | IC695ACC412 |
IC200MDL940 | IC200CBL545 | IC695CPE302 |
IC200CPU002 | IC200CBL550 | IC695CDEM006 |
IC200UDD112 | IC200UAR028 | IC695CPL410 |
IC200UDD120 | IC200CBL525 | IC695PNS101 |
IC200DEM103 | IC200MDL741 | IC695ALG626 |
IC200UDD064 | IC200UAL005 | IC695ALG608 |
抗干扰能力强IC200UDR020 模拟量模块
“数智化”第二步:用AIGC实现降本增效
2022年年底,ChatGPT平地一声惊雷掀起了生成式AI大模型的热浪。在此前的合作基础上,海尔设计和亚马逊就“生成式AI+工业设计”展开探索。
至于为什么会选择主动拥抱AI,海尔设计希望实现降本增效。生成式AI可以基于企业现有的流程、知识图谱,通过训练后避免重复、低效的流程和复用。
基于此,海尔设计联合亚马逊云科技还是合作部署生成式AI应用,打造了全国结合实际业务场景落地的AIGC工业设计方案。
据悉,在基础设施架构层,该方案借助Amazon SageMaker快速的构建和训练AIGC模型,通过应用Amazon SageMaker机器学习平台,以Fine-tune as a Service(调优即服务)的方式提供服务,利用Amazon SageMaker在线的模型训练和管理能力,为消费品、游戏等场景提供创意辅助、内容生产辅助和创作支持。
此外,亚马逊云科技为海尔设计提供了弹性GPU算力—— Amazon EC2 G4dn实例,该实例是行业内成本效益高的通用GPU实例,适合于部署机器学习模型,例如图像分类、对象检测和语音识别,以及图形密集型应用程序,例如远程图形工作站、游戏串流和图像渲染。
项目上线后,海尔设计将AIGC解决方案引入到产品设计、UI 设计、CMF 设计、品牌设计等环节,涵盖了新品设计、改款升级、渠道定制化等工业设计的业务场景。
此外,海尔设计和亚马逊科技还合作开发了集成式虚拟设计师AI助手“Co-designer”,通过与亚马逊云科技的合作,海尔创新设计中心在基础设施方面获得了全面的支持,包括3D云桌面、文件共享系统和自动化设计等。
“Co-designer是合作的一个关键点,尽管目前仍不是非常完善,但作为一个重要的子场景,它为设计中心带来了许多新的应用。
除了Co-designer之外,海尔还将进一步开发和应用其他的子场景,如设计师之前的部分以及制造、营销、服务和安装等领域。
他们计划在整个价值链的不同环节中探索和应用AIGC技术,从而实现更多的工作优化和创新”,吴剑表示。
据悉,目前通过AIGC,海尔已实现了设计中心业务提效11.9%。
结语:生成式AI时代,智能制造的未来机遇
从数字化迈向数智化,传统制造业正朝着智能制造的大方向走去。在生成式AI技术的引领下,智能制造正迎来前所未有的机遇。
生成式AI技术通过结合深度学习、自然语言处理和图像识别等技术,使计算机能够自动生成内容、设计方案和创意,为制造业带来了革命性的变革。
在智能制造的未来,生成式AI将在多个方面带来机遇,包括自动生成设计方案,优化生产过程,提高生产效效率,智能预测,故障预警,以及智能质量控制和检测,甚至在供应链和物流管理上也能提出优解,提高效率和准确性等等。
随着生成式AI技术的不断发展和创新,智能制造将进入一个全新的时代。
不过,要实现生成式AI的潜力,仍需克服一些挑战。其中包括数据隐私和安全保护、技术人才培养和跨部门合作等。
只有通过全面推动技术创新、加强合作和培养人才,才能实现智能制造的未来机遇,并为制造业带来更加繁荣和可持续发展的前景。
抗干扰能力强IC200UDR020 模拟量模块